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Supplementary Tables

Subtype Model Log likelihood (SE) ∆AICc
H1N1pdm09 Adults with k -79.5 (0.06) 0

without k -81.7 (0.03) 2.1

Children with k -91.8 (0.01) 0
without k -95.9 (0.04) 5.6

H3N2 Adults with k -45.5 (0.04) 0
without k -48.6 (0.03) 3.6

Children with k -77.8 (0.07) 0
without k -85.5 (0.05) 13.0

Supplementary Table 1: Model comparisons for sub-model of short-term boosting. Models with k include the antibody ceiling effect (Eq. 11,
Supplementary Discussion, and models without k do not (kai ,s = 0).

Subtype Epidemic Simulated incidence From observed ≥ 4-fold changes
H1N1pdm09 Adults 1 0.09 [0.06, 0.16] 0.05

2 0.12 [0.09, 0.15] 0.12
3 0.07 [0.04, 0.09] 0.06

Children 1 0.14 [0.09, 0.33] 0.10
2 0.17 [0.12, 0.24] 0.19
3 0.10 [0.05, 0.15] 0.06

H3N2 Adults 1 0.12 [0.09, 0.15] 0.16
2 0.13 [0.11, 0.16] 0.15
3 0.04 [0.03, 0.05] 0.03

Children 1 0.22 [0.15, 0.30] 0.21
2 0.23 [0.16, 0.30] 0.24
3 0.06 [0.02, 0.13] 0.03

Supplementary Table 2: Incidence in each epidemic. Epidemics are shown in Fig. 3. The simulated incidence was estimated from the simulated
latent infections. The main and bracketed values give the median and 95% quantiles, respectively, from 1000 replicate simulations of the models at
the maximum likelihood estimate. Incidence was also estimated from the frequency of ≥ 4-fold titer consecutive titer rises observed in the data.

Infecting Subtype Imprinting Group Parameter Population subset MLE [95% CI]
H1N1pdm09 Group 1 (αimp,H1N1pdm09) Ages 35 - 50 y 0.8 [0.6, 1.0]
H3N2 Group 2 (αimp,H3N2) Ages 35 - 50 y 1.0 [0.9, 1.2]

Supplementary Table 3: Maximum likelihood estimates of the group-level imprinting effects (αimp,H1N1pdm09 and αimp,H3N2) among individuals
ages 35-50 y. 95% confidence intervals (CIs) are reported.



Notation Type Value
Parameter
Magnitude of dchildren,s Estimated
short-term boost dadults,s (sub-model)
Variability of σchildren,s Estimated
short-term boost σadults,s (sub-model)
Antibody ceiling effect kchildren,s Estimated

kadults,s (sub-model)
Magnitude of ζchildren,s Estimated
long-term boost ζadults,s
50% protective titer (TP50) TP50children,s Estimated

TP50adults,s
Weight of HI-correlated ψchildren,s Estimated
protection ψadults,s Estimated
Waning rate of non- wnonspecific,children,s Estimated
HI-correlated immunity wnonspecific,adults,s
Waning rate heterosubtypic wnonspecific,m Estimated
Scaled transmission rate βscaled,s Estimated
Daily within-household transmission rate ωs Estimated
Age category- βc,cati,catn Fixed Contact matrix for five age categories [1]:
specific contact rate Young children (0-10)

Older children (11-20 y)
Young adults (21-40 y)
Older adults (41-65 y)
Elderly (>65 y)

Age distribution of pcatn Fixed Young children: 0.19 [2]
community flu intensity Older children: 0.33

Young adults: 0.30
Older adults: 0.14
Elderly: 0.04

Infection duration Γ(µ, σdur) Fixed µ = 5 d, σdur = 1 d [3]
Rate of short-term titer rise r Fixed 0.2 d−1 [4]
Duration: infection to peak titer Tpeak Fixed 4 wks [4]
Rate of short-term titer waning w Fixed 0.008 d−1 [4, 5]
Scaling parameter of antibody protection curve φ Fixed 2.1 [6]
Measurement error ε Fixed 1.29 [7, 8]

εundetectable 0.74 [7]
State variable
Titer hi,s(t) Simulated
Baseline titer hbaseline,i,s(0) Fixed with error
Susceptibility qi,s(t) Simulated
Time of infection tX

i,s Simulated

Supplementary Table 4: Model parameters and state variables.



Subtype Parameter MLE [95% CI]
H1N1pdm09 Adults dai,s 3.6 [2.4,5.2]

σai,s 1.9 [1.4, 2.6]
kai,s 0.3 [0.1, 1.8]

Children dai,s 3.5 [3.3, 5.5]
σai,s 0.9 [0.7, 1.5]
kai,s 0.6 [0.3, 1.2]

H3N2 Adults dai,s 4.6 [3.1, 7.1]
σai,s 1.4 [0.9, 2.3]
kai,s 1.0 [0.6 , 2.5]

Children dai,s 5.1 [3.9,7.2]
σai,s 1.5 [1.0, 2.2]
kai,s 0.5 [0.3, 1.0]

Supplementary Table 5: Maximum likelihood estimates of the parameters that govern the short-term titer dynamics with 95% confidence intervals
(CIs).



Subtype % Symptomatic infections % Primary infections
H1N1pdm09 Adults 69.4% 38.9%

Children 64.3% 54.8%
H3N2 Adults 76.2% 38.1%

Children 69.0% 75.8%

Supplementary Table 6: Fraction of children and adults with symptomatic and primary infections for H1N1pdm09 and H3N2. Symptomatic
infections are defined by an ARI in the two weeks before PCR-confirmed infection and primary infections are defined by the absence of infection
with or without ARI symptoms in other household members in the two weeks before PCR-confirmed infection. ARI was defined as having least two
of the following symptoms: fever ≥ 37.8◦C, cough, sore throat, runny nose, headache, myalgia, and phlegm.

Subtype Parameter MLE [95% CI]
H1N1pdm09 βscaled,s -2.8 [-3.0, -2.7]
H3N2 βscaled,s -3.2 [-3.3, -3.1]

Supplementary Table 7: Maximum likelihood estimate of the subtype-specific scaled transmission rate, βscaled,s, for each subtype. Results are shown
on a log scale with 95% confidence intervals (CIs).
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Supplementary Figure 1: Distribution of baseline titers. The distribution of the minimum observed (baseline) titers in children and adults for
H1N1pdm09 and H3N2 are shown. The vertical dashed line gives the geometric mean baseline titer.
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Supplementary Figure 2: Bivariate likelihood profile of the rate of waning of non-HI-mediated protection in adults and the 50% protective titer in
adults (TP50adults) for H1N1pdm09.
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Supplementary Figure 3: Group-level imprinting. (a) Probability of imprinting by historically circulating influenza A subtypes by age in 2009. (b)
Change in the mean probability of primary infection with historically-circulating subtypes by age between 2009 and 2014. The black dashed line gives
the mean number of individuals by age that were observed in the data between 2009 and 2014. (c) Likelihood profiles for the effect of imprinting by
H2N2 on the rate of infection with H1N1pdm09 (left) and the effect of imprinting by H3N2 on the rate of H3N2 infection (right). Values of the log
parameter less than 0 (vertical dotted line) indicate a protective imprinting effect. The black dashed lines denote the 95% confidence interval.
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Supplementary Figure 4: Likelihood profile of the rate of waning of heterosubtypic protection. The x-axis gives the corresponding half-life of
protection.
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Supplementary Figure 5: Subtype-specific flu intensity (ILI × % positive) in Hong Kong. The black vertical dashed line denotes the earliest
observation date in the data.
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Supplementary Figure 6: Observed and simulated distributions of consecutive 2-, 4-, and 8-fold titer rises per individual in the H1N1pdm09 data.
The dashed blue lines give the medians from 1000 replicate simulations of the model, and the shaded blue areas are bounded by the 2.5% and 97.5%
quantiles.
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Supplementary Figure 7: Observed and simulated distributions of consecutive 2-, 4-, and 8-fold titer rises per individual in the H3N2 data. The
dashed blue lines give the medians from 1000 replicate simulations of the model, and the shaded blue areas are bounded by the 2.5% and 97.5%
quantiles.
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Supplementary Figure 8: Observed and simulated distributions of the coefficients of log titer variation in the H1N1pdm09 data. The distributions
are shown for individuals with initial titers ≥ 10 (detectable) and for individuals with initial titers <10 (undetectable).
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Supplementary Figure 9: Observed and simulated distributions of coefficients of log titer variation in the H3N2 data. The distributions are shown
for individuals with initial titers ≥ 10 (detectable) and for individuals with initial titers <10 (undetectable).



Individual 4 Individual 5 Individual 6

Individual 1 Individual 2 Individual 3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

2

4

6

2

4

6

Time (y)

Lo
g 

tit
er

Observed
Simulated
Time of 
simulated 
infection

Data type

Supplementary Figure 10: Simulated individual trajectories from the filtered particle population of the model for H1N1pdm09 at the maximum
likelihood parameters. The filtered trajectories were obtained using 50,000 particles. The solid and dashed black lines give the observed log titer and
the filtered log titer trajectory, respectively. The dashed red lines denote latent times of infection from the model. Results are shown for the first six
individuals in the dataset.
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Supplementary Figure 11: Simulated individual trajectories from the filtered particle population of the model for H3N2 at the maximum likelihood
parameters. The filtered trajectories were obtained using 50,000 particles. The solid and dashed black lines give the observed log titer and the filtered
log titer trajectory, respectively. The dashed red lines denote latent times of infection from the model. Results are shown for the first six individuals
in the dataset.
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Supplementary Figure 12: Rescaled community intensity of H1N1pdm09 during the 2009 pandemic. Rescaled intensity shown in adults (dashed
blue line) and in children (solid blue line and shading) compared to the original intensity reported by community surveillance (blue dotted line).
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Supplementary Figure 13: Observed titer boost as a function of the pre-infection log titer for individuals with PCR-confirmed infection. Results are
shown for H1N1pdm09 (left) and H3N2 (right). Boosts are calculated as the post-infection minus the pre-infection log titer. The top panel for each
subtype gives the relationship for aggregated data from children and adults. Note that log titers are defined as in Eq. 18.
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Supplementary Figure 14: Observed and simulated distributions of titer boosts from the sub-model in individuals with PCR-confirmed infections.
Boosts are calculated as the post-infection minus the pre-infection log titer. Error bars give the 95% CI among simulations.
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Supplementary Figure 16: Distribution of normalized titer boosts after PCR-confirmed infections. Results are shown for symptomatic and
asymptomatic infections (left) and primary and secondary infections (right). Normalized titer boosts are calculated as the log post-infection titer
minus the log pre-infection titer divided by the length of time in years between the pre- and post-infection samples. Box plots give the median and
interquartile range of the normalized titer boosts, and the individual data points are overlain with horizontal jitter. Differences in the mean of the
distributions are determined by non-parametric Wilcoxon tests.
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Supplementary Figure 17: Likelihood profiles for the estimated parameters of the best-fit models in adults for H1N1pdm09 and H3N2. The dashed
curve gives the spline computed by the Monte Carlo Adjusted Profile technique (Supplementary Discussion). The vertical lines denote the MLEs
from models under alternative initial conditions (Supplementary Discussion).
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Supplementary Figure 18: Likelihood profiles for the estimated parameters of the best-fit models in children for H1N1pdm09 and H3N2. The
dashed curve gives the spline computed by the Monte Carlo Adjusted Profile technique (Supplementary Discussion). The vertical lines denote the
MLEs from models under alternative initial conditions (Supplementary Discussion) .
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MLEs from the model with rescaled H1N1pdm09 intensity during the 2009 pandemic (Supplementary Discussion) .
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Supplementary Figure 21: Likelihood profiles for the subtype-specific scaled transmission rate, βscaled,s for H1N1pdm09 and H3N2. The dashed
horizontal line gives the threshold for statistical significance at a 95% level. The vertical lines denote the bounds of the 95% CI.

Supplementary Discussion

Short-term titer dynamics after PCR-confirmed infection

Model of short-term antibody boost after PCR-confirmed infection

To increase accuracy modeling the short-term post-infection titer dynamics (Eqs. 11 - 13, Fig. 1, Step 1a), we fit a sub-model to the
observed titers before and after a PCR-positive swab (Supplementary Fig. 15). We estimate the mean magnitude and variability of
the short-term titer boost (dai ,s and σai ,s, respectively) and the dependence of the boost on the pre-infection titer, kai ,s. This allows us
to test for the presence of an antibody ceiling effect, which has been identified in studies of post-vaccination titer dynamics [9, 10].

To fit the sub-models, we fixed the pre-infection latent titer, hi,s(0), to the observed pre-swab titer, hobs1,i,s, allowing for two-fold
uncertainty in the measured titer (Eq. 23). We fix the latent time of infection, tX

i,s, based on the date of the positive swab, assuming
that the swab occurred during an infected period that we draw from a gamma distribution with fixed parameters (Supplementary
Table 4). We model the dynamics of the short-term titer rise as in Eq. 11, with the rate of rise r and time Tpeak between infection and
peak titer fixed (Supplementary Table 4). After peaking, the titer wanes at rate w (fixed as in Supplementary Table 4) until the time
of the second observed value, hobs2,i,s.



Infection generates a variable short-term homosubtypic antibody boost that declines with increasing pre-infection titer.

The raw data suggest an antibody ceiling effect (Supplementary Fig. 13). We performed linear regressions of individuals’ observed
changes in log titer on their observed pre-infection log titers, excluding one individual with ∆t > 1 y between the pre- and
post-infection titer measurements. For both H1N1pdm09 and H3N2, the difference between pre- and post-infection log titers declines
linearly with increasing pre-infection titer. The linear decline is statistically significant (p<0.02 for both subtypes). When we stratify
the regressions in children and adults for each subtype, the decline is statistically significant, with p≤0.01 for children for both
subtypes and for adults with H3N2 (p=0.09 for adults with H1N1pdm09).

The dynamical sub-models also support an antibody ceiling effect for both subtypes in children and adults (Supplementary
Tables 1,5), such that higher pre-infection titer diminishes the boost. For both subtypes, models that include the antibody ceiling
effect (with k) outperform models that do not (without k, kai ,s = 0) in children and adults (∆AICc > 2, Supplementary Table 1).
Therefore, part of the individual variation in the acute infection response can be explained by differences in pre-existing titers.
Simulations from the MLEs of the best fit models of the short-term dynamics reproduce the shape of the observed distribution of
titer boosts in children and adults after PCR-confirmed infection for both subtypes (Supplementary Fig. 14).

From the maximum likelihood parameter estimates of the best-fit sub-models, we find substantial variability in antibody titer
responses after PCR-confirmed infection with both subtypes in children and adults (Supplementary Table 5). This finding is
consistent with other analyses [11, 12]. The inferred standard deviation of the lognormal titer boost distribution (Eq. 12) ranges from
0.9 to 1.9 log titer units among children and adults for H1N1pdm09 and H3N2 (Supplementary Table 5). The mean magnitude of the
boost is higher for H3N2 than for H1N1pdm09 in both age groups. The variability in the acute infection response and the difference
in the response between subtypes and age groups suggest that threshold titers used in sero-surveillance may not reliably predict
infection in all individuals [13, 6].

Observed titer boosts secondary to symptomatic vs. asymptomatic infections and primary vs. secondary infections

The sub-model of the short-term titer dynamics does not distinguish between symptomatic infections and asymptomatic infections
that may have been detected incidentally given illness in another household member. If the measured titer boosts vary with symptom
severity, our estimates may be biased, since index cases were identified by symptoms. We define symptomatic infection by the
presence of ARI in the two weeks before PCR-confirmed infection. Based on the household symptom diaries, approximately 70% of
infections in both children and adults for both subtypes were symptomatic (Supplementary Table 6). Children were more likely than
adults for both subtypes to have a primary, or index case infection, meaning that no other household members had a PCR-confirmed
infection or symptoms of an ARI in the two weeks prior to confirmed infection.

We compared the distributions of titer changes between symptomatic and asymptomatic infections and between primary and
secondary infections (Supplementary Fig. 16). Because titers wane, we normalized the boost by the interval between the pre- and
post-infection sample dates. We find no statistically significant difference in the mean normalized titer boost between symptomatic
and aymptomatic infections for either subtype in children or adults. Similarly, we find no statistically significant differences when
comparing primary and secondary infections. Therefore, the data suggest that the titer boosts estimated from PCR-confirmed
infections in adults and children are not biased by differences in asymptomatic case detection.

Model validation and sensitivity analysis

The model reproduces the observed distribution of titer rises among individuals.

We compared the observed numbers of 2-,4-, and 8-fold increases in consecutive titer measurements for H3N2 and H1N1pdm09
to the distributions obtained from 1000 replicate simulations of the model at the MLEs (Supplementary Figs. 6, 7). The model
reproduces the observed distributions in children and adults for both subtypes.

The model overestimates the variation in individuals’ titers.

We compared the observed distribution of the coefficient of titer variation for individuals to the distribution obtained from 1000
replicate simulations of the model at the MLE (Supplementary Figs. 8, 9). We separately analyzed the distributions for individuals
with detectable initial titers (≥10) and undetectable initial titers (<10). In our models, any simulated titer <10 takes the value 10 of an
undetectable titer. Therefore, the variation in undetectable titers by measurement error alone is less than that for titers ≥10. For
both subtypes, the models tend to overestimate the individual variation over time. The bias is more pronounced among individuals
with detectable baseline titers, which might be explained by the measurement error. Nevertheless, the difference in the means of



the observed and simulated CV distributions ranges from 0.0 to only 0.1 for children and adults with H1N1pdm09 and H3N2.
Furthermore, the filtered particle population of the model, an estimate of the smoothed distribution of latent model variables, at the
maximum likelihood parameters closely reproduces the observed titer trajectories for individuals (Supplementary Figs. 10, 11).

The maximum likelihood parameter estimates are robust to assumptions about the initial conditions.

To initialize the full model, we drew each individual’s time of most recent infection from the density of the subtype-specific influenza
intensity in the seven years preceding the first observation. For comparison, we fitted the best-fit model for each subtype in children
and adults using two alternative assumptions about the initial conditions. First, we drew the time of most recent infection from the
density of the subtype-specific influenza intensity over the five years before the first observation (Five years, Supplementary Figs. 17,
18). Second, we drew the time of most recent infection uniformly over the seven years before the first observation rather than using
Ls(t) (Uniform draw, Supplementary Figs. 17, 18). The maximum likelihood estimates of the alternative models fall within the 95%
CI of the parameter estimates from the original assumption.

The inference results are robust to rescaling of the community intensity of H1N1pdm09 during the 2009 pandemic.

During the first wave of pandemic influenza H1N1pdm09 in 2009, increased reporting rates and changes in health-care seeking
behaviors affected surveillance [14, 15]. We re-fitted our models of H1N1pdm09 after scaling the community flu intensity to adjust
for these differences. A previous study estimated separate scaling factors for the relationship between the H1N1pdm09 intensity
proxy and the rate of infection before and after a November 2009 change point [16]. We rescaled our estimate Ls(t) of the 2009
pandemic H1N1pdm09 intensity by multiplying the intensity before the change point by the ratio ρ of the estimated post- and
pre-change point scaling factors in children (ρ = 0.25) and adults (ρ = 0.29). Supplementary Fig. 12 shows the rescaled intensity.
Notably, our observations begin at the end of the 2009 pandemic. Fewer than 6% of observations in children and fewer than 5% of
observations in adults occurred before the November 2009 change point. Fewer than 1% of observations in children and adults
occurred before October 2009. The model recovered the same MLE given the rescaled pandemic intensity (Supplementary Fig. 19).

The measurement error estimated from replicate titer measurements is consistent with literature estimates.

The sera from three visit dates were measured twice. In our models, we used the first titer measurement for each serum sample (the
measurement recorded closest to the sampling date). To estimate the measurement error, we calculated the difference in measured
titer between the second and first replicates (Supplementary Fig. 20). For detectable titer levels (>10), the standard deviation of
the error distribution (SD = 1.23 log titer units) matches the measurement error that we fixed in the model according to estimates
from the literature (Supplementary Table 4). The negative central tendency of the difference between the second and first replicates
among detectable titers (median = -0.98 log titer units log titer units) indicates that measured titer generally declines with time
since sampling. Additionally, in line with previous analyses [7], we find that the error distribution is zero-inflated for undetectable
titers <10 (Supplementary Fig. 20), justifying our use of a separate measurement error for undetectable titers. A previous study
estimated the probability of 2-fold measurement error for undetectable titers [7]. We therefore calculated the corresponding error
(ε = 0.74) in our normally distributed observation model that would yield the same probability of 2-fold measurement error for
undetectable titers. The observation model is non-invertible (Eq. 19). Therefore, while we use the measurement error to draw
simulated observations from a normal distribution centered around the latent log titers, we cannot back-calculate the value of
the latent titers from observed data. This is why we assign the initial baseline titer hbaseline,i,s(0) from a possible two-fold range
surrounding the lowest observed titer hmin

obs,i,s (Eq. 23).

Age-specific contact rates

We used age-specific contact rates estimated from a population-based survey of social contact patterns in Hong Kong that recorded
daily contacts from over 1100 individuals in five age categories (Supplementary Table 4, [1]). The authors calculated the relative
number of contacts between individuals of each age category, adjusting for the propensity of individuals in each age class to respond
to either paper or online questionnaires. The authors also reported the contact matrix between age groups. To fix the total daily
number of contacts in our analysis for an individual of a particular age category, we multiplied the reported number of daily contacts
from the reference group (children ages 0-10 years) by the relative number of contacts in each age category. To fix the number of
daily contacts with individuals of each age group, we multiplied the total number of daily contacts by the fraction of age-group
specific contacts from the contact matrix.



Historical influenza A subtype frequency data

Before 1968, annual subtype frequencies are specified by well-known durations of subtype circulation between historical pandemics
[17]. After 1968, annual frequencies are calculated from subtype-specific surveillance data for Hong Kong or from Southeast Asia
for years in which data from Hong Kong are unavailable. Between 1968 and 1997, subtype frequencies are the annual fraction of
subtype-specific influenza A sequences in the Global Initiative on Sharing All Influenza Data (GISAID) database [18]. Aggregate
regional data is used during years in which fewer than 30 sequences are available from Hong Kong or China. From 1997 to 2014,
annual frequencies are the fraction of subtype-specific specimens reported by the Global Influenza Surveillance and Response System
(GISRS) [19].

Monte Carlo error

A central feature of inference of stochastic models from large datasets is non-negligible Monte Carlo error that often makes it
infeasible to calculate the likelihood with an error of less than one log likelihood unit. This principle holds especially for longitudinal
(or panel) data, which often consist of a collection of individual time series that are dynamically independent apart from shared
model parameters. Standard approaches for constructing 95% confidence intervals (CIs) rely on a threshold of 1.92 log likelihood
units from the maximum log likelihood to construct the CI [20]. Therefore, high Monte Carlo error, or error in the likelihood
calculation, also poses a challenge for estimating 95% confidence intervals. The Monte Carlo Adjusted Profile (MCAP) technique
[21] shows that a quadratic approximation in the region of the maximum likelihood can be used to reliably extrapolate the 95%
CI in systems with high Monte Carlo error. The MCAP algorithm accounts for the Monte Carlo error in the standard error of the
spline fitted to a given likelihood profile. Importantly, Ionides and colleagues have shown that despite wider uncertainty around the
maximum likelihood in systems with high Monte Carlo error, the MCAP approach reliably identifies the parameters. While the
Monte Carlo variance of the log-likelihood estimate increases linearly with the amount of data, so too does the Fisher information, or
the information about the system, and therefore the ability to reliably identify the maximum likelihood parameters.

In addition to using the MCAP technique to construct likelihood profiles, we accounted for Monte Carlo error in the maxi-
mum likelihood inference by initiating 100 independent MIF searches at random parameter values for any given model. To identify
the MLE for a given point on a likelihood profile, we required that three MIF searches independently arrive within two log likelihood
units of the maximum likelihood value.
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